Propofol Anesthesia Is Reduced in Phospholipase C-Related Inactive Protein Type-1 Knockout Mice.

نویسندگان

  • Yoshikazu Nikaido
  • Tomonori Furukawa
  • Shuji Shimoyama
  • Junko Yamada
  • Keisuke Migita
  • Kohei Koga
  • Tetsuya Kushikata
  • Kazuyoshi Hirota
  • Takashi Kanematsu
  • Masato Hirata
  • Shinya Ueno
چکیده

The GABA type A receptor (GABAA-R) is a major target of intravenous anesthetics. Phospholipase C-related inactive protein type-1 (PRIP-1) is important in GABAA-R phosphorylation and membrane trafficking. In this study, we investigated the role of PRIP-1 in general anesthetic action. The anesthetic effects of propofol, etomidate, and pentobarbital were evaluated in wild-type and PRIP-1 knockout (PRIP-1 KO) mice by measuring the latency and duration of loss of righting reflex (LORR) and loss of tail-pinch withdrawal response (LTWR). The effect of pretreatment with okadaic acid (OA), a protein phosphatase 1/2A inhibitor, on propofol- and etomidate-induced LORR was also examined. PRIP-1 deficiency provided the reduction of LORR and LTWR induced by propofol but not by etomidate or pentobarbital, indicating that PRIP-1 could determine the potency of the anesthetic action of propofol. Pretreatment with OA recovered the anesthetic potency induced by propofol in PRIP-1 KO mice. OA injection enhanced phosphorylation of cortical the GABAA-R β3 subunit in PRIP-1 KO mice. These results suggest that PRIP-1-mediated GABAA-R β3 subunit phosphorylation might be involved in the general anesthetic action induced by propofol but not by etomidate or pentobarbital.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dysfunction of extrasynaptic GABAergic transmission in phospholipase C-related, but catalytically inactive protein 1 knockout mice is associated with an epilepsy phenotype.

Phospholipase C-related, but catalytically inactive protein (PRIP) was first identified as a novel inositol 1,4,5-triphosphate binding protein. The PRIP-1 subtype is expressed predominantly in the central nervous system and binds directly to the GABA type A receptor (GABA(A)-R) β-subunit and several other proteins involved in the trafficking of GABA(A)-Rs to the plasma membrane. We found that t...

متن کامل

Phenotypes of pain behavior in phospholipase C-related but catalytically inactive protein type 1 knockout mice

Phospholipase C-related inactive protein (PRIP) plays important roles in trafficking to the plasma membrane of GABA(A) receptor, which is involved in the dominant inhibitory neurotransmission in the spinal cord and plays an important role in nociceptive transmission. However, the role of PRIP in pain sensation remains unknown. In this study, we investigated the phenotypes of pain behaviors in P...

متن کامل

Phospholipase C-Related Catalytically Inactive Protein (PRIP) Regulates Lipolysis in Adipose Tissue by Modulating the Phosphorylation of Hormone-Sensitive Lipase

Phosphorylation of hormone-sensitive lipase (HSL) and perilipin by protein kinase A (PKA) promotes the hydrolysis of lipids in adipocytes. Although activation of lipolysis by PKA has been well studied, inactivation via protein phosphatases is poorly understood. Here, we investigated whether phospholipase C-related catalytically inactive protein (PRIP), a binding partner for protein phosphatase ...

متن کامل

Effect of N-methyl-D-aspartate receptor epsilon1 subunit gene disruption of the action of general anesthetic drugs in mice.

BACKGROUND Recent molecular strategies demonstrated that the N-methyl-d-aspartate (NMDA) receptor is a major target site of anesthetic agents. In a previous article, the authors showed that knocking out the NMDA receptor epsilon1 subunit gene markedly reduced the hypnotic effect of ketamine in mice. In the current study, the authors examined the in vivo contribution of the NMDA receptor epsilon...

متن کامل

Phospholipase C-related catalytically inactive protein (PRIP) controls KIF5B-mediated insulin secretion

We previously reported that phospholipase C-related catalytically inactive protein (PRIP)-knockout mice exhibited hyperinsulinemia. Here, we investigated the role of PRIP in insulin granule exocytosis using Prip-knockdown mouse insulinoma (MIN6) cells. Insulin release from Prip-knockdown MIN6 cells was higher than that from control cells, and Prip knockdown facilitated movement of GFP-phogrin-l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 361 3  شماره 

صفحات  -

تاریخ انتشار 2017